Sea ice thickness measurements by ultrawideband penetrating radar: First results

Research

Publication Type:

Journal Article

Source:

Cold Regions Science and TechnologyCold Regions Science and TechnologyCold Regions Science and Technology, Volume 55, Number 1, p.33-46 (2009)

ISBN:

0165-232X

Keywords:

ARCTIC-OCEAN, Electromagnetic modeling, INTERANNUAL VARIABILITY, INTERNAL LAYERS, Penetrating radar, RANGE, Sea ice, Sea ice thickness, SUMMER, SYSTEM, WINTER

Abstract:

This study evaluates the potential of ultrawideband penetrating radar for the measurement of sea ice thickness. Electromagnetic modeling and system simulations were first performed to determine the appropriate radar frequencies needed to simultaneously detect both the top ice surface (snow-ice interface) and to penetrate through the lossy sea ice medium to identify the bottom ice surface (ice-ocean interface). Based on the simulation results, an ultrawideband radar system was built that operated in two modes to capture a broad range of sea ice thickness. The system includes a low-frequency mode that operates from 50250 MHz for measuring sea ice thickness in the range of 1 to 7 m (both first-year and multiyear ice types) and a high-frequency mode that operates from 300-1300 MHz to capture a thinner range of thickness between 0.3 and 1 m (primarily first-year ice type). Two field tests of the radar were conducted in 2003, the first off Barrow, Alaska, in May and the second off East Antarctica in October. Overall the radar measurements showed a mean difference of 14 cm and standard deviation of 30 cm compared with in situ measurements over first-year ice that ranged from 0.5 to 4 m in thickness. Based on these initial results, we conclude that ultrawideband penetrating radar is feasible for first-year sea ice thickness measurements. We discuss approaches for further system improvements and implementation of such a system on an airborne platform capable of providing regional sea ice thickness measurements for both first-year and multiyear ice from 0.3 to 10 m thick. (C) 2008 Elsevier B.V. All rights reserved.

Notes:

ISI Document Delivery No.: 381VLTimes Cited: 0Cited Reference Count: 62Cited References: *ACIA, 2005, ARCT CLIM IMP ASS, P1042 *INT GLOB OBS STRA, 2007, 1405 WMOTD *IPCC, 2007, 4 ASS REP CLIM CHANG *US NAT RES COUNC, 2001, ENH NASA CONTR POL S, P124 BIRCH M, 2002, P SOC PHOTO-OPT INS, V4758, P573 COMPTON RC, 1987, IEEE T ANTENN PROPAG, V35, P622 COX GEN, 1988, 8813 CRREL COX GFN, 1983, J GLACIOL, V29, P306 DEBYE P, 1929, POLAR MOL ELACHI C, 1987, INTRO PHYSICS TECHNI, P413 FORSBERG R, 2005, GEOPHYS RES LETT, V32, DOI 10.1029/2005GL023711 GOFF JA, 1995, J GEOPHYS RES-OCEANS, V100, P7005 HAAS C, 1997, GEOPHYSICS, V62, P749 HAAS C, 1998, COLD REG SCI TECHNOL, V27, P1 HAAS C, 2001, J GEOPHYS RES-OCEANS, V106, P4449 HAAS C, 2003, SEA ICE INTRO ITS PH, P82 HALLIKAINEN M, 1992, MICROWAVE REMOTE SEN, V68, P29 IZUKA K, 1984, J APPL PHYS, V56, P2572 KANAGARATNAM P, 2001, J GEOPHYS RES-ATMOS, V106, P33799 KANAGARATNAM P, 2004, IEEE T GEOSCI REMOTE, V42, P483, DOI 10.1109/TGRS.2004.823451 KANAGARATNAM P, 2007, IEEE T GEOSCI REMOTE, V45, P2715, DOI 10.1109/TGRS.2007.900673 KONG JA, 1986, ELECTROMAGNETIC WAVE KOVACS A, 1979, J GEOPHYS RES-OC ATM, V84, P5749 KOVACS A, 1986, COLD REGIONS SCI TEC, V12, P67 KOVACS A, 1987, 876 CRREL US ARM COL KOVACS A, 1987, COLD REG SCI TECHNOL, V14, P207 KOVACS A, 1990, GEOPHYSICS, V55, P1327 KWOK R, 2003, GEOPHYS RES LETT, V30, ARTN 2218 KWOK R, 2007, GEOPHYS RES LETT, V34, ARTN L05501 KWOK R, 2007, J GEOPHYS RES-OCEANS, V112, ARTN C12013 LAXON S, 2003, NATURE, V425, P947, DOI 10.1038/nature02050 LINDSAY RW, 2005, J CLIMATE, V18, P4879 LIU JP, 2004, GEOPHYS RES LETT, V31, ARTN L02205 MAHONEY A, 2003, EMI MEASUREMENTS ICE MAHONEY A, 2007, J GEOPHYS RES-OCEANS, V112, ARTN C02001 MANNINEN AT, 1997, J GEOPHYS RES-OCEANS, V102, P1119 MASSOM RA, 2006, ANN GLACIOL, V44, P288 MEIER WN, 2005, EOS T AM GEOPHYS UN, V86, P32 MELLING H, 2005, GEOPHYS RES LETT, V32, ARTN L24501 MISARIDIS T, 2005, IEEE T ULTRASON FERR, V52, P192 MULTALA J, 1996, COLD REG SCI TECHNOL, V24, P355 OKAMOTO K, 1986, MEMOIRS NATL I POLAR, V45, P56 RICHTERMENGE J, 2006, STATE ARCTIC REPORT, P36 ROSEN PA, 2000, P IEEE, V88, P333 ROTHROCK DA, 1999, GEOPHYS RES LETT, V26, P3469 ROTHROCK DA, 2005, J GEOPHYS RES-OCEANS, V110, ARTN C01002 ROTHROCK DA, 2005, J GEOPHYS RES-OCEANS, V110, ARTN C01002 STROEVE J, 2007, GEOPHYS RES LETT, V34, ARTN L09501 SUN B, 2003, SCI CHINA SER D, V46, P1151, DOI 10.1360/02yd0033 THORNDIKE AS, 1975, J GEOPHYS RES, V80, P4501 THORNDIKE AS, 1992, REPORT SEA ICE THICK TINGA WR, 1973, J APPL PHYS, V44, P3897 TUCKER WB, 1992, MICROWAVE REMOTE SEN, V68, P9 VANT MR, 1978, J APPL PHYS, V49, P1264 VINJE T, 1998, J GEOPHYS RES-OCEANS, V103, P10437 WADHAMS P, 2000, ICE OCEAN WADHAMS P, 2006, GEOPHYS RES LETT, V33, UNSP L045 WEEKS WF, 1986, GEOPHYSICS SEA ICE, P9 WINEBRENNER DP, 1995, RADIO SCI, V30, P373 WORBY AP, 1999, COLD REG SCI TECHNOL, V29, P49 YU Y, 2004, J GEOPHYS RES-OCEANS, V109, ARTN C08004 ZWALLY HJ, J GEOPHYS R IN PRESS, DOI 10.1029/2007JC004284Holt, Benjamin Kanagaratnam, Pannirselvam Gogineni, Siva Prasad Ramasami, Vijaya Chandran Mahoney, Andy Lytle, VictoriaCalifornia Institute of Technology President's Fund ; National Aeronautics and Space AdministrationELSEVIER SCIENCE BV