HOW TO APPLY

OPPORTUNITIES

Join the only Science & Technology Center dedicated to developing techniques and technologies for determining the contribution of ice sheets to sea level rise.

Train with world-renowned scientists and engineers in a multidisciplinary curriculum and collaborate with leaders in polar research.

Perform cutting-edge science and technology research in a growing field.

Take the opportunity to study abroad with CReSIS colleagues in the United Kingdom, Denmark, India, and Australia.

VISION

To understand and predict the role of polar ice sheets in sea-level change.

The complex relationship between the Earth's thinning ice sheets and sea-level rise is an issue of global importance, especially for the millions of people living in coastal regions. To better understand this connection, scientists are in need of data that can only be collected with state-of-the-art sensors and processed with advanced signal processing techniques. Using this technology, scientists can develop improved, next-generation ice sheet models, which will enable more accurate predictions of the response of ice sheets to climate change.

CReSIS combines the expertise of researchers from five universities, multiple industries, and federal laboratories to create technology and conduct research to achieve a better understanding of the mass balance of the polar ice sheets.
Graduate students can examine a broad range of scientific and technical topics related to climate change research by taking courses outside their areas of specialization.

Distance-learning technology formats will be used to make all courses available to those at partner institutions. This will allow students to learn from the experts at all partner institutions while earning credit at their home university.

Core Course Topics

- Advanced Glacier Dynamics
- Geophysics of Glaciers
- Geophysical Signal Processing
- Glaciers and Landscape
- Graduate Glaciology
- Ice and Climate
- InSAR and Applications
- Legal and Ethical Issues of Scientific Research
- Polar Science Related to Climate Change
- Principles of Microwave Remote Sensing
- RF Circuit Design
- Seismic Imaging of Glaciers
- Teaching College-level Engineering and Science